Spatial patterns of European innovation: a spatial econometric approach with technological proximity weights

Keywords: European Innovation, Spatial Econometrics, Technological similarity

Abstract

The paper deals with a spatial econometric analysis of 220 European regions. The analysis follows the Mixed Geographically Weighted Regression – Spatial Autoregressive approach. Patent applications were a proxy for innovation output. Instead of traditionally applied geographical proximity, the technological similarity was considered. The results supported the assumption of spatial differentiation of model parameters and indicated that regional innovation activities do not have only a local character in almost half of the regions. The region's technological similarity appears to be a significant factor stimulating innovation for regions that are not among the top innovators.

References

[1] Anselin, L. (2020). Density-Based Clustering Methods. [online]. [cit. 19.09.2022]. Available at: https://geodacenter.github.io/workbook/99_density/lab9b.html
[2] Anselin, L., Rey, S. J. (2014). Modern Spatial Econometrics in Practice. GeoDa Press LLC, Chicago.
[3] Basile, R., Durbán, M., Mínguez, R., Montero, J.M., Mur, J. (2014). Modeling regional economic dynamics: spatial dependence, spatial heterogeneity and nonlinearities. Journal of Economic Dynamics and Control, 48: 229–245.
[4] Boschma, R. (2005). Proximity and Innovation: A Critical Assessment. Regional Studies, 39: 61–74.
[5] Charlot, S., Crescenzi, R., Musoleli, A. (2015). Econometric modelling of the regional knowledge production function in Europe. Journal of Economic Geography, 15: 1227–1259.
[6] Cho, S. H., Lambert, D., Roberts, R., Kim, S. (2010). Moderating urban sprawl: Is there a balance between shared open space and housing parcel size? Journal of Economic Geography, 10(5): 763–783.
[7] Eurostat (2021): Eurostat regional statistical database. [online]. [cit. 01.06.2021]. Available at: http://ec.europa.eu/eurostat/
[8] Fisher, W. D. (1958). On Grouping for Maximum Homogeneity. Journal of the American Statistical Association, 53: 789–98.
[9] Furková, A. (2019). Spatial spillovers and European Union regional innovation activities. Central European Journal of Operations Research, 27(3): 815-834.
[10] Geniaux, G, Martinetti, D. (2018). A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models. Regional Science and Urban Economics, 72: 74–85.
[11] Guastella, G., van Oort, F. (2015). Regional Heterogeneity and Interregional Research Spillovers in European Innovation: Modelling and Policy Implications. Regional Studies, 49(11): 1-16.
[12] Hollanders, H., Es-Sadki, N., Mekelbach, I. (2019). Regional Innovation Scoreboard 2019. [online]. [cit. 01.03.2020]. Available at: https://ec.europa.eu/growth/sites/growth/files/ris2019.pdf
[13] Jenks, G. F. (1977). Optimal Data Classification for Choropleth Maps. Occasional Paper no. 2. Department of Geography, University of Kansas.
[14] Khan, B. Z. (2012). Of Time and Space: A Spatial Analysis of Technological Spillovers among Patents and Unpatented Innovations in the Nineteenth Century. [online]. [cit. 01.06.2017]. Available at: http://wwwnberorg/papers/w20732
[15] Kumar, I. (2008). Innovation Clusters: A Study of Patents and Citations ESRI International User Conference. [online]. [cit. 01.06.2017]. Available at: https://wwwpcrdpurdueedu/files/media/Innovation-Clusters-A-Study-of-Patents-and-Citationspdf
[16] Moreno, R., Paci, R., Usai, S. (2005a). Spatial Spillovers and Innovation Activity in European Regions. Environment and Planning A: Economy and Space, 37(10): 1793-1812.
[17] Moreno, R., Paci, R., Usai, S. (2005b). Innovation clusters in the European regions. [online]. [cit. 10.03.2017]. Available at: http://crenosunicait/crenos/sites/default/files/wp/05-12pdf
Published
2024-06-25
How to Cite
Furková, A. (2024). Spatial patterns of European innovation: a spatial econometric approach with technological proximity weights. Review of Applied Socio-Economic Research, 27(1), 5-17. https://doi.org/10.54609/reaser.v27i1.291